Geometric Distribution vs Negative Binomial Distribution

Geometric Distribution vs Negative Binomial Distribution

Geometric DistributionNegative Binomial (Pascal) Distribution
  • 𝐏(𝑋=𝑥; 𝑝) = 𝐏{the 1𝑠𝑡 success occurs on the 𝑥𝑡ℎ bernoulli trial}
  • 𝐏(𝑋=𝑥; 𝑝) = (1−𝑝)𝑥1𝑝
  • 𝐏(𝑋=𝑥) = 𝐏{ the 𝑥𝑡ℎ trial results in the 𝑘𝑡ℎ success }
  • 𝐏(𝑋=𝑥) = 𝐏{ (𝑘-1) successes in the first (𝑥 - 1) trials AND the last trial is success }
  • 𝐏(𝑋=𝑥) = 𝐏{ (𝑘-1) successes in the first (𝑥 - 1) trials} 𝐏{ the last trial is success }
  • 𝐏(𝑋=𝑥) = [(𝑥-1) choose (𝑘-1)] (1-𝑝)𝑥-𝑘𝑝𝑘-1𝑝
  • 𝐏(𝑋=𝑥) = [(𝑥-1) choose (𝑘-1)] (1-𝑝)𝑥-𝑘𝑝𝑘
  • 𝐏(𝑋=𝑥) = [(𝑥-1)!/[(𝑘-1)!(𝑥-𝑘)!]] (1-𝑝)𝑥-𝑘𝑝𝑘
  • 𝐏(𝑋=𝑥; 𝑝) = (1−𝑝)𝑥1𝑝
  • 𝐏(𝑋=𝑥; 𝑝,𝑘=1) = [(𝑥-1)!/[(1-1)!(𝑥-1)!]] (1-𝑝)𝑥-1𝑝1
  • 𝐏(𝑋=𝑥; 𝑝,𝑘=1) = [(𝑥-1)!/(𝑥-1)!] (1-𝑝)𝑥-1𝑝
  • 𝐏(𝑋=𝑥; 𝑝,𝑘=1) = (1-𝑝)𝑥-1𝑝