Conditional Relative Entropy
Conditional Relative Entropy
- 𝐷𝑄(𝑃(𝑋|𝑌)) = 𝐄𝑃[ 𝑙𝑔 [𝑃(𝑋|𝑌)/𝑄(𝑋|𝑌)] ]
- 𝐷𝑄(𝑃(𝑋|𝑌)) = ∑𝑦∊𝑌𝑃(𝑌=𝑦)·𝐷𝑄(𝑃(𝑋|𝑌=𝑦))
Relative Entropy Chain Rule
let 𝑄 and 𝑃 be distribution over 𝑋1, ..., 𝑋𝑛
- 𝐷𝑄(𝑃) = 𝐷𝑄(𝑃(𝑋1)) + 𝐷𝑄(𝑃(𝑋2|𝑋1)) + 𝐷𝑄(𝑃(𝑋3|𝑋2, 𝑋1)) + ... + 𝐷𝑄(𝑃(𝑋𝑛|𝑋𝑛-1, ..., 𝑋1))
Properties
- 𝐷𝑄(𝑃(𝑋)) ≤ 𝐷𝑄(𝑃(𝑋,𝑌))
- 𝐷𝑄(𝑃(𝑋1, ..., 𝑋𝑘)) ≤ 𝐷𝑄(𝑃(𝑋1, ..., 𝑋𝑛)) for 𝑘 ≤ 𝑛
, multiple selections available,