Hessian/Hesse Matrix

Hessian/Hesse Matrix

Hessian/Hesse Matrix - 𝐻

Hessian Matrix - Definition

The Hessian matrix 𝐻(𝑓)(π‘₯1, ..., π‘₯π‘˜) is defined as:

  • 𝐻(𝑓)(π‘₯1, ..., π‘₯π‘˜)[𝑖,𝑗] = (𝛿/𝛿π‘₯𝑖𝛿π‘₯𝑗) 𝑓(π‘₯1, ..., π‘₯π‘˜) # for 𝑖,𝑗 = 1 to π‘˜

Anywhere that the second partial derivatives are continuous, the differential operators are commutative:

  • (𝛿/𝛿π‘₯𝑖𝛿π‘₯𝑗) π‘“(π‘₯1, ..., π‘₯π‘˜) = (𝛿/𝛿π‘₯𝑗𝛿π‘₯𝑖) 𝑓(π‘₯1, ..., π‘₯π‘˜)

This implies that 𝐻[𝑖,𝑗] = π»[𝑗,𝑖] so the Hessian matrix is a symmetric matrix