Banach Spaces

Banach Spaces

Banach Spaces

Banach Spaces - Example #1

Given:

  • โ„ is a one-dimensional real vector space
  • ||ยท|| : โ„ โ†’ [0, โˆž] is a norm

Thus:ย 

  • ๐‘‘||ยท||(๐‘ฅ,๐‘ฆ) = |๐‘ฅ-๐‘ฆ| is a distance metric
  • (โ„,๐‘‘||ยท||) is a Banach space

Banach Spaces - Example #2

Given:

  • ๐‘‰ is a zero-dimensional real vector space
  • ||ยท|| : ๐‘‰ โ†’ [0, โˆž] is a norm defined by ||0|| = 0

Thus:ย 

  • (๐‘‰,||ยท||) is a Banach space

Banach Spaces - Example #3

Given:

  • โ„• is the set of natural numbers
  • ๐”ฝ is a field of real and/or complex numbers
  • ๐‘ โˆŠ [1,โˆž)

Let ๐ฟ๐‘(โ„•,๐”ฝ) an Lp space be defined as all sequences (๐‘ฅ๐‘›)๐‘›โˆŠโ„• in ๐”ฝ such that:

  • Loading

Then ||ยท||๐‘ : ๐ฟ๐‘ โ†’ [0, โˆž) is the norm defined as:

  • Loading

(๐ฟ๐‘,||ยท||๐‘) is a Banach space.