Let {𝑋1, ..., 𝑋𝑛} be samples taken from a Bernoulli(𝑝) Distribution
How to estimate parameter 𝑝 using MLE method?
the log-likelihood function 𝓛(𝜃) of 𝑛 Bernoulli Distribution is as follows
now differentiate with respect to 𝑝
- 𝓛(𝑝) = 𝑘·𝑙𝑛(𝑝) + (𝑛-𝑘)·𝑙𝑛(1-𝑝)
- 𝓛'(𝑝) = 𝑘/𝑝 - (𝑛-𝑘)/(1-𝑝)
equate to 0 and solve for 𝑝
- 𝓛'(𝑝) = 𝑘/𝑝 - (𝑛-𝑘)/(1-𝑝)
- 0 = 𝑘/𝑝 - (𝑛-𝑘)/(1-𝑝)
- (𝑛-𝑘)/(1-𝑝) = 𝑘/𝑝
- (𝑛-𝑘)𝑝 = 𝑘(1-𝑝)
- 𝑛𝑝 - 𝑘𝑝 = 𝑘 - 𝑘𝑝
- 𝑛𝑝 - 𝑘𝑝 + 𝑘𝑝 = 𝑘
- 𝑛𝑝 = 𝑘
- 𝑝𝑀𝐿𝐸 = 𝑘 / 𝑛