MLE - Bernoulli Distribution

MLE - Bernoulli Distribution

Maximum Likelihood Estimation (MLE) for Bernoulli Distribution

𝑝𝑀𝐿𝐸 = 𝑘 / 𝑛

Computation

 computation

Let {𝑋1, ..., 𝑋𝑛} be samples taken from a Bernoulli(𝑝) Distribution

How to estimate parameter 𝑝 using MLE method?

the log-likelihood function 𝓛(𝜃) of 𝑛 Bernoulli Distribution is as follows

now differentiate with respect to 𝑝

  • 𝓛(𝑝) = 𝑘·𝑙𝑛(𝑝) + (𝑛-𝑘)·𝑙𝑛(1-𝑝)
  • 𝓛'(𝑝) = 𝑘/𝑝 - (𝑛-𝑘)/(1-𝑝)

equate to 0 and solve for 𝑝

  • 𝓛'(𝑝) = 𝑘/𝑝 - (𝑛-𝑘)/(1-𝑝)
  • 0 = 𝑘/𝑝 - (𝑛-𝑘)/(1-𝑝)
  • (𝑛-𝑘)/(1-𝑝) = 𝑘/𝑝
  • (𝑛-𝑘)𝑝 = 𝑘(1-𝑝)
  • 𝑛𝑝 - 𝑘𝑝 = 𝑘 - 𝑘𝑝
  • 𝑛𝑝 - 𝑘𝑝 + 𝑘𝑝 = 𝑘
  • 𝑛𝑝 = 𝑘
  • 𝑝𝑀𝐿𝐸 = 𝑘 / 𝑛