Tensors

Tensors

Tensors

  • a tensor is an object that is invariant under a change of coordinate/basis and has COMPONENTS that change in a special predictable way under a change of coordinates/basis
  • a tensor is a collection of vectors and covectors combined together using the tensor product
  • tensors can take several different forms (e.g. scalars, vectors, covectors, linear maps, bilinear maps, multilinear maps, etc)

Tensors - Introduction

 Click here to expand...

1 - How do basis vector components change WRT change of basis?

 Click here to expand...

We define:

  • old basis: {𝑒1, 𝑒2}
  • new basis: {𝑒̃1, 𝑒̃2}

We define:

  • forward transform: old basis → new basis
      • 𝑒̃1 = 𝑎·𝑒1 + 𝑏·𝑒2
      • 𝑒̃2 = 𝑐·𝑒1 + 𝑑·𝑒2

      Loading

  • backward transform: new basis → old basis
      • 𝑒1 = 𝑎·𝑒̃1 + 𝑏·𝑒̃2
      • 𝑒2 = 𝑐·𝑒̃1 + 𝑑·𝑒̃2

      Loading

Forward transform is the inverse of Backward transform

  • Loading

  • Loading

Thus

  • Loading

  • Loading

Confirming the inverse behavior of the above equations

  • Loading

  • Loading

  • Loading

  • Loading

Thus 𝛿𝑖𝑗 is the kronecker delta function:

  • Loading

2 - How do vector components change WRT change of basis?

 Click here to expand...

  • 𝑣 = 𝑣[1] · 𝑒1 + 𝑣[2] · 𝑒2
  • 𝑣̃ = 𝑣̃[1] · 𝑒̃1 + 𝑣̃[2] · 𝑒̃2
  • 𝑣 = 𝑣̃ are geometrically the same vector
  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

Thus

  • Loading

  • Loading

  • Loading

  • Loading

Thus

  • Loading

Thus
  • 𝐵 is used to transform vector components from old to new
  • 𝐹 is used to transform vector components from new to old

3 - Covector Introduction

 Click here to expand...

Covectors are functions 𝛼: 𝑉→ℝ that map a vector to a number and also obey the following rules:

  • 𝛼(𝑣 + 𝑢) = 𝛼(𝑣) + 𝛼(𝑢)
  • 𝛼(𝑛·𝑣) = 𝑛·𝛼(𝑣)

Covectors can also be viewed as elements of dual vector space 𝑉*:

  • (𝑛·𝛼)(𝑣) = 𝑛·𝛼(𝑣)
  • (𝛼+𝛽)(𝑣) = 𝛼(𝑣) + 𝛽(𝑣)

Covectors can be visualized as level sets

What does a covector measure when we write [2 1]? like 2 of what and 1 of what?

Covectors don't live in the vector space 𝑉, thus we can't use basis vectors in 𝑉 like {𝑒1, 𝑒2} to measure covectors

epsilon covectors 𝜀𝑖 are defined as:

  • 𝜀1(𝑒1) = 1
  • 𝜀1(𝑒2) = 0
  • 𝜀2(𝑒1) = 0
  • 𝜀2(𝑒2) = 1

Thus:

In other words, let:

  • 𝐸 = [𝑒1|𝑒2] a matrix whose columns are the basis vectors {𝑒1, 𝑒2
  • 𝐸ˆ = [𝜀1|𝜀2] a matrix whose columns are the epsilon covectors {𝜀1, 𝜀2}

The system of equations can be expressed as:

  • Loading

  • Loading

epsilon covector 𝜀𝑖 consumes arbitrary vector 𝑣:
  • 𝜀1(𝑣) = 𝜀1(𝑣[1]·𝑒1 + 𝑣[2]·𝑒2)
  • 𝜀1(𝑣) = 𝑣[1] · 𝜀1(𝑒1) + 𝑣[2] · 𝜀1(𝑒2)
  • 𝜀1(𝑣) = 𝑣[1]
  • 𝜀2(𝑣) = 𝜀2(𝑣[1]·𝑒1 + 𝑣[2]·𝑒2)
  • 𝜀2(𝑣) = 𝑣[1] · 𝜀2(𝑒1) + 𝑣[2] · 𝜀2(𝑒2)
  • 𝜀2(𝑣) = 𝑣[2]

arbitrary covector 𝛼 consumes arbitrary vector 𝑣:

  • 𝛼(𝑣) = 𝛼(𝑣[1]·𝑒1 + 𝑣[2]·𝑒2)
  • 𝛼(𝑣) = 𝑣[1]·𝛼(𝑒1) + 𝑣[2]·𝛼(𝑒2)
  • 𝛼(𝑣) = 𝜀1(𝑣)·𝛼(𝑒1) + 𝜀2(𝑣)·𝛼(𝑒2)
  • 𝛼(𝑣) = 𝜀1(𝑣)·𝛼1 + 𝜀2(𝑣)·𝛼2
  • 𝛼(𝑣) = 𝛼1·𝜀1(𝑣) + 𝛼2·𝜀2(𝑣)
  • 𝛼(𝑣) = (𝛼1·𝜀1 + 𝛼2·𝜀2) (𝑣)

Thus

  • 𝛼 = 𝛼1·𝜀1 + 𝛼2·𝜀2

Thus

  • any arbitrary covector 𝛼 can be expressed as a linear combination of basis epsilon covectors {𝜀1, 𝜀2}

The epsilon covectors 𝜀1 and 𝜀2 form the basis vectors of the dual vector space 𝑉*:

  1. 𝜀1 and 𝜀2 are linearly independent
    1.  proof

      A set of covectors {𝜀1, 𝜀2} from the dual vector space 𝑉* is linearly independent if:

      • scalars {𝑎1, 𝑎2} must be ALL zero such that:
      • 𝑎1𝜀1 + 𝑎2𝜀2 = 𝜀0 # where 𝜀0 is the null functional (i.e. zero vector in 𝑉*)

      We need to prove the above statement.

      The expression 𝑎1𝜀1 + 𝑎2𝜀2 = 𝜀0 naturally leads to (𝑎1𝜀1 + 𝑎2𝜀2)(𝑣) = 𝜀0(𝑣); for all 𝑣∊𝑉. Where we have both sides "consume" an arbitrary vector 𝑣∊𝑉:

      • (𝑎1𝜀1 + 𝑎2𝜀2)(𝑣) = 𝜀0(𝑣); for all 𝑣∊𝑉
      • (𝑎1𝜀1 + 𝑎2𝜀2)(𝑣) = 0; for all 𝑣∊𝑉 # by assumption that 𝜀0(𝑣) = 0 for all 𝑣∊𝑉
      • 𝑎1𝜀1(𝑣) + 𝑎2𝜀2(𝑣) = 0; for all 𝑣∊𝑉 # because they are linear transformations

      Thus the original statement that we need to prove now becomes:

      • scalars {𝑎1, 𝑎2} must be ALL zero such that:
      • 𝑎1𝜀1(𝑣) + 𝑎2𝜀2(𝑣) = 0; for all 𝑣∊𝑉

      Since the new statement is true for every vector 𝑣∊𝑉, it must also be true for the basis vectors {𝑒1, 𝑒2}:

      • that the scalars {𝑎1, 𝑎2} must be ALL zero such that:
      • 𝑎1𝜀1(𝑒𝑖) + 𝑎2𝜀2(𝑒𝑖) = 0; for all 𝑒𝑖∊{𝑒1, 𝑒2}

      Evaluating the above statement for each basis vector yields:

      • that the scalars {𝑎1, 𝑎2} must be ALL zero such that:
      • for 𝑒𝑖=𝑒1:
        • 𝑎1𝜀1(𝑒1) + 𝑎2𝜀2(𝑒1) = 0
        • 𝑎1*1 + 𝑎2*0 = 0
        • 𝑎1 = 0
      • for 𝑒𝑖=𝑒1:
        • 𝑎1𝜀1(𝑒2) + 𝑎2𝜀2(𝑒2) = 0
        • 𝑎1*0 + 𝑎2*1 = 0
        • 𝑎2 = 0

      Thus, 𝑎1 and 𝑎2 must equal to 0.

  2. every arbitrary covector 𝛼∊𝑉* can be expressed as a linear combination of {𝜀1, 𝜀2}

    1. see above

The components of covector 𝛼 can be extracted as follows:

  • 𝛼 = 𝛼1·𝜀1 + 𝛼2·𝜀2
  • 𝛼(𝑒1) = 𝛼1
  • 𝛼(𝑒2) = 𝛼2

Thus:

  • the components of an arbitrary covector (e.g. [2 1]) are measured by the number of covector/level-set lines that the basis vectors {𝑒1, 𝑒2} pierces

RECAP:

4 - How do covector components change WRT change of basis?

 Click here to expand...

Let's define:

𝜀1(𝑒1) = 1 = 𝜀̃1(𝑒̃1)
𝜀1(𝑒2) = 0 = 𝜀̃1(𝑒̃2)
𝜀2(𝑒1) = 0 = 𝜀̃2(𝑒̃1)
𝜀2(𝑒2) = 1 = 𝜀̃2(𝑒̃2)

𝜀𝑖(𝑒𝑗) = 𝛿𝑖𝑗 = 𝜀̃𝑖(𝑒̃𝑗)

Thus

  • 𝛼 = 𝛼̃ = 𝛼1·𝜀1 + 𝛼2·𝜀2
  • 𝛼 = 𝛼̃ = 𝛼̃1·𝜀̃1 + 𝛼̃2·𝜀̃2
  • 𝛼(𝑒1) = 𝛼1
  • 𝛼(𝑒2) = 𝛼2
  • 𝛼(𝑒̃1) = 𝛼̃1
  • 𝛼(𝑒̃2) = 𝛼̃2

Thus

  • 𝛼 = 𝛼1·𝜀1 + 𝛼2·𝜀2
  • 𝛼 = 𝛼(𝑒1)·𝜀1 + 𝛼(𝑒2)·𝜀2
  • 𝛼 = 𝛼̃1·𝜀̃1 + 𝛼̃2·𝜀̃2
  • 𝛼 = 𝛼(𝑒̃1)·𝜀̃1 + 𝛼(𝑒̃2)·𝜀̃2

Thus

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

5 - How do dual basis covectors change WRT change of basis?

 Click here to expand...

We define:

  • 𝜀𝑖(𝑒𝑗) = 𝛿𝑖𝑗 = 𝜀̃𝑖(𝑒̃𝑗)

By definition of basis

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

6 - Linear Maps Introduction

 Click here to expand...


A linear map 𝐿:

  • maps vectors to vectors, 𝐿: 𝑉→𝑊 (e.g. 𝐿: 𝑉→𝑉)
  • add inputs or the outputs, 𝐿(𝑣+𝑤) = 𝐿(𝑣) + 𝐿(𝑤)
  • scale the inputs or outputs, 𝐿(𝓃·𝑣) = 𝓃·𝐿(𝑣)

The Matrix Multiplication can be purely Derived from the Linearity Rules Above

  • 𝑤 = 𝐿(𝑣) = 𝐿(𝑣1𝑒1 + 𝑣2𝑒2)
  • 𝑤 = 𝐿(𝑣) = 𝑣1𝐿(𝑒1) + 𝑣2𝐿(𝑒2)
    • 𝐿(𝑒1) = 𝐿11𝑒1 + 𝐿21𝑒2
    • 𝐿(𝑒2) = 𝐿12𝑒1 + 𝐿22𝑒2
  • 𝑤 = 𝐿(𝑣) = 𝑣1(𝐿11𝑒1 + 𝐿21𝑒2) + 𝑣2(𝐿12𝑒1 + 𝐿22𝑒2)
  • 𝑤 = 𝐿(𝑣) = 𝑣1𝐿11𝑒1 + 𝑣1𝐿21𝑒2 + 𝑣2𝐿12𝑒1 + 𝑣2𝐿22𝑒2
  • 𝑤 = 𝐿(𝑣) = (𝐿11𝑣1+ 𝐿12𝑣2)𝑒1  +  (𝐿21𝑣1 + 𝐿22𝑣2)𝑒2
  • 𝑤 = 𝐿(𝑣) = (        𝑤1          )𝑒1  +  (         𝑤2          )𝑒2

Thus:

  • 𝑤1 = 𝐿11𝑣1+ 𝐿12𝑣2
  • 𝑤2 = 𝐿21𝑣1 + 𝐿22𝑣2

Thus:

  • Loading

Basis of Linear Maps

{𝑒1𝜀1,  𝑒1𝜀2,  𝑒2𝜀1,  𝑒2𝜀2} is one possible basis for linear map 𝐿: ℝ2→ℝ2 where:

  • Loading

  • Loading

  • Loading

  • Loading

Thus

  • Loading

  • 𝐿 = 𝐿𝑖𝑗 𝑒𝑖𝜀𝑗 # Einstein's notation

Thus: linear maps can be written as linear combinations of vector-covector pairs

How is a Basis 𝑒𝑖𝜀𝑗 a Linear Map (That Eats a Vector and Outputs a Vector)?

Given:

  • 𝐿 = 𝐿𝑖𝑗 𝑒𝑖𝜀𝑗
  • 𝑣 = 𝑣𝑘𝑒𝑘

Let 𝐿 eat a vector 𝑣:

  • 𝐿(𝑣) = 𝐿(𝑣)
  • 𝐿(𝑣) = 𝐿𝑖𝑗𝑒𝑖𝜀𝑗(𝑣𝑘𝑒𝑘)
  • 𝐿(𝑣) = 𝐿𝑖𝑗𝑣𝑘𝑒𝑖𝜀𝑗(𝑒𝑘)
  • 𝐿(𝑣) = 𝐿𝑖𝑗𝑣𝑘𝑒𝑖𝛿𝑗𝑘
  • 𝐿(𝑣) = 𝐿𝑖𝑗𝑣𝑗𝑒𝑖
  • 𝐿(𝑣) = 𝑤𝑖𝑒𝑖 # 𝐿𝑖𝑗𝑣𝑗 is a scalar, thus replace with 𝑤𝑖 = 𝐿𝑖𝑗𝑣𝑗
  • 𝐿(𝑣) = 𝑤 # which outputs a vector

Given a linear transformation 𝐿, the set of vectors for which 𝐿 vanishes is called the KERNEL of 𝐿

  • kernel(𝐿) = {𝑥∊𝑋 : 𝐿𝑥 = 0 in 𝑌}
  • range (𝐿) = {𝑦∊𝑌 : ∃𝑥∊𝑋 such that 𝑇𝑥 = 𝑦}

Given a linear transformation 𝐿:

  • kernel of 𝐿 is a linear subspace of 𝑋
  • range  of 𝐿 is a linear subspace of 𝑌

The dimension of range(𝐿) is called the rank of 𝐿 (i.e. rank(𝑇))

Matrices: Null-Spaces, Column-Spaces, Row Spaces

  • null-space of 𝐴 is the kernel of 𝐴
    • the kernel space is orthogonal to the row vectors/space
  • column space of 𝐴 is the range of 𝐴
    • is the subspace of ℝ𝑚 spanned by column vectors
  • row space of 𝐴
    • is the subspace of ℝ𝑛 spanned by row vectors

The Rank-Nullity Theorem

Given a linear transformation 𝐿 from ℝ𝑛 to ℝ𝑚, then:

  • dim ker(𝐿) + dim range(𝐿) = 𝑛

7 - How do linear transformations change WRT change of basis?

 Click here to expand...


 Detailed

Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

Einstein's notation:

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

Thus
  • Loading

  • Loading


 Simple (using vector-covector pairs)

Given:

Linear Map DefinitionBasis VectorsBasis Covectors
  • 𝐿 = 𝐿˜𝑖𝑗 𝑒̃𝑖𝜀̃𝑗
  • 𝐿 = 𝐿𝑖𝑗 𝑒𝑖𝜀𝑗
  • Loading

  • Loading

  • Loading

  • Loading

Then

Then start with the definition of linear map 𝐿:

  • 𝐿 = 𝐿𝑖𝑗 𝑒𝑖𝜀𝑗

Next, transform all the basis vectors and basis covectors individually

  • 𝐿 = 𝐿𝑖𝑗 𝐵𝑘𝑖𝑒̃𝑘 𝐹𝑗𝑙𝜀̃𝑙
  • 𝐿 = (𝐵𝑘𝑖𝐿𝑖𝑗𝐹𝑗𝑙) 𝑒̃𝑘𝜀̃𝑙
  • 𝐿 = (    𝐿˜𝑘𝑙   ) 𝑒̃𝑘𝜀̃𝑙

Thus:

  • 𝐿𝑘𝑙𝐹𝑘𝑖𝐿˜𝑖𝑗𝐵𝑗𝑙
  • 𝐿˜ = 𝐵𝐿𝐹

Then start with the definition of linear map 𝐿:

  • 𝐿 = 𝐿˜𝑖𝑗 𝑒̃𝑖𝜀̃𝑗

Next, transform all the basis vectors and basis covectors individually

  • 𝐿 = 𝐿˜𝑖𝑗 𝐹𝑘𝑖𝑒𝑘 𝐵𝑗𝑙𝜀𝑙
  • 𝐿 = (𝐹𝑘𝑖𝐿˜𝑖𝑗𝐵𝑗𝑙) 𝑒𝑘𝜀𝑙
  • 𝐿 = (    𝐿𝑘𝑙   ) 𝑒𝑘𝜀𝑙

Thus:

  • 𝐿𝑘𝑙𝐹𝑘𝑖𝐿˜𝑖𝑗𝐵𝑗𝑙
  • 𝐿 = 𝐹𝐿˜𝐵
 Another Way

Given:

  • basis 𝑒 = {𝑒1, ..., 𝑒𝑛}
  • basis 𝑓 = {𝑓1, ..., 𝑓𝑛}
  • matrix 𝐹 = [𝑓] = [𝑓1 ... 𝑓𝑛] where 𝑓𝑖 are columns expressed in 𝑒

Then:

  • 𝑣𝑒 = 𝐹 𝑣𝑓
  • 𝑣𝑓 = 𝐹-1 𝑣𝑒

Hence if:

  • 𝑇∊𝐿(ℝ𝑛) and matrix 𝐴𝑒 is a realization of transformation 𝑇 expressed in basis 𝑒

What is the realization matrix 𝐴𝑓 expressed in basis 𝑓?

  • by definition:
    • 𝑦𝑓 = 𝐴𝑓𝑥𝑓
    • 𝑦𝑒 = 𝐴𝑒𝑥𝑒
  • then:
    • 𝑦𝑓 = 𝐹-1𝑦𝑒
    • 𝑦𝑓 = 𝐹-1𝐴𝑒𝑥𝑒
    • 𝑦𝑓 = 𝐹-1𝐴𝑒𝐹𝑥𝑓
    • 𝐴𝑓𝑥𝑓 = 𝐹-1𝐴𝑒𝐹𝑥𝑓
  • thus:
    • 𝐴𝑓 = 𝐹-1𝐴𝑒𝐹

8 - How do basis of a linear transformation change WRT change of basis?

 Click here to expand...

TODO

9 - Metric Tensor Introduction

 Click here to expand...

Metric Tensors

  • are invariant to change of basis
  • measures: length & angle

Length

 Click here to expand...
  • ||𝑣||2 = 𝑣·𝑣
  • ||𝑣||2 = (𝑣1𝑒1 + 𝑣2𝑒2)·(𝑣1𝑒1 + 𝑣2𝑒2)
  • ||𝑣||2 = (𝑣1·𝑣1)(𝑒1·𝑒1) + 2(𝑣1·𝑣2)(𝑒2·𝑒2) + (𝑣2·𝑣2)(𝑒2·𝑒2)

Loading

Loading

  • ||𝑣||2 = 𝑣𝑖𝑣𝑗(𝑒𝑖·𝑒𝑗) = 𝑣𝑖𝑣𝑗𝑔𝑖𝑗
  • (𝑒𝑖·𝑒𝑗) = 𝑔𝑖𝑗
  • ||𝑣||2 = 𝑣̃𝑖𝑣̃𝑗(𝑒̃𝑖·𝑒̃𝑗) = 𝑣̃𝑖𝑣̃𝑗𝑔̃𝑖𝑗
  • (𝑒̃𝑖·𝑒̃𝑗) = 𝑔̃𝑖𝑗

Angles

 Click here to expand...

Say we have Unit Vectors

  • 𝑒̃1 = 𝑒1
  • 𝑒̃2 = 𝑐𝑜𝑠(𝜃)·𝑒1 + 𝑠𝑖𝑛(𝜃)·𝑒2

three possible combinations:

  • 𝑒̃1·𝑒̃1 = 𝑒1·𝑒1 = 1
  • 𝑒̃1·𝑒̃2 = 𝑒1 · (𝑐𝑜𝑠(𝜃)·𝑒1 + 𝑠𝑖𝑛(𝜃)·𝑒2)
    •    = 𝑐𝑜𝑠(𝜃)(𝑒1·𝑒1) + 𝑠𝑖𝑛(𝜃)(𝑒1·𝑒2)
    •    = 𝑐𝑜𝑠(𝜃)
  • 𝑒̃2·𝑒̃2 = (𝑐𝑜𝑠(𝜃)·𝑒1 + 𝑠𝑖𝑛(𝜃)·𝑒2) · (𝑐𝑜𝑠(𝜃)·𝑒1 + 𝑠𝑖𝑛(𝜃)·𝑒2)
    •    = 𝑐𝑜𝑠(𝜃)2(𝑒1·𝑒1) + 𝑠𝑖𝑛(𝜃)2(𝑒2·𝑒2) + 2·𝑠𝑖𝑛(𝜃)·𝑐𝑜𝑠(𝜃)(𝑒1·𝑒2)
    •    = 𝑐𝑜𝑠(𝜃)2 + 𝑠𝑖𝑛(𝜃)2
    •    = 1

Thus:

  • 𝑒1·𝑒1 = 1
  • 𝑒1·𝑒2 = 0
  • 𝑒2·𝑒2 = 1
  • 𝑒̃1·𝑒̃1 = 1
  • 𝑒̃1·𝑒̃2 = 𝑐𝑜𝑠(𝜃)
  • 𝑒̃2·𝑒̃2 = 1

Loading

Loading

Say We Have Arbitrary Vectors

First, define 2 new basis vectors {𝑒̃1, 𝑒̃2}:

  • 𝑒̃1·𝑒̃1 = 1
  • 𝑒̃1·𝑒̃2 = 𝑐𝑜𝑠(𝜃)
  • 𝑒̃2·𝑒̃2 = 1

The metric tensor (𝑣·𝑤) is computed as:

  • (𝑣·𝑤) = (𝑎·𝑒̃1)·(𝑏·𝑒̃2)
    •    = 𝑎𝑏·(𝑒̃1·𝑒̃2)
    •    = 𝑎𝑏·𝑐𝑜𝑠(𝜃)
    •    = ||𝑣||·||𝑤||·𝑐𝑜𝑠(𝜃)

Thus:

  • Loading

The angle between 2 vectors can be computed entirely by the metric tensor

  • (𝑣·𝑤) = (𝑣1·𝑒1 + 𝑣2·𝑒2) · (𝑤1·𝑒1 + 𝑤2·𝑒2)
    • = (𝑣1·𝑒1 + 𝑣2·𝑒2) · (𝑤1·𝑒1 + 𝑤2·𝑒2)
    • = 𝑣1𝑤1(𝑒1·𝑒1) + 𝑣1𝑤2(𝑒1·𝑒2) + 𝑣2𝑤1(𝑒2·𝑒1) + 𝑣2𝑤2(𝑒2·𝑒2)
    • = 𝑣1𝑤1𝑔11 + 𝑣1𝑤2𝑔12 + 𝑣2𝑤1𝑔21 + 𝑣2𝑤2𝑔22
    • = 𝑣𝑖𝑤𝑗𝑔𝑖𝑗

Lengths & Angles Summary

  • 𝑣·𝑣  = ||𝑣||2                 = 𝑣𝑖𝑣𝑗 𝑔𝑖𝑗
  • 𝑤·𝑤 = ||𝑤||2                = 𝑤𝑖𝑤𝑗 𝑔𝑖𝑗
  • 𝑣·𝑤  = ||𝑣|| ||𝑤|| 𝑐𝑜𝑠(𝜃) = 𝑣𝑖𝑤𝑗 𝑔𝑖𝑗
  • Loading

Components of a Metric Tensor

  • 𝑔𝑖𝑗 = 𝑒𝑖·𝑒𝑗 = 𝑒𝑗·𝑒𝑖 = 𝑔𝑗𝑖

Thus the metric tensor is a symmetric matrix

Metric Tensor Algebraic Properties

  • 𝑔: 𝑉⨯𝑉 → ℝ
  • multiplication
    • 𝑎·(𝑣𝑖𝑤𝑗𝑔𝑖𝑗) = (𝑎·𝑣𝑖)𝑤𝑗𝑔𝑖𝑗 = 𝑣𝑖(𝑎·𝑤𝑗)𝑔𝑖𝑗
    • 𝑎·𝑔(𝑣,𝑤) = 𝑔(𝑎·𝑣,𝑤) = 𝑔(𝑣,𝑎·𝑤) # simplified
  • addition
    • 𝑔(𝑣+𝑢,𝑤) = 𝑔(𝑣,𝑤) + 𝑔(𝑢,𝑤)
    • 𝑔(𝑣,𝑤+𝑢) = 𝑔(𝑣,𝑤) + g(𝑣,𝑢)
  • symmetric
    • 𝑔(𝑣,𝑤) = 𝑔(𝑤,𝑣)
  • positive definite
    • 𝑔(𝑣,𝑣) = ||𝑣||2 ≥ 0

Metric Tensors are a type of bilinear form with 2 additional properties:

  • symmetric
  • positive definite

10 - How do Metric Tensor Components Change WRT Change of Basis

 Click here to expand...

HOW METRIC TENSOR COMPONENTS CHANGE WRT CHANGE OF BASIS

  • 𝑔𝑘𝑙 = 𝑒𝑘·𝑒𝑙
  • 𝑔̃𝑖𝑗 = 𝑒̃𝑖·𝑒̃𝑗
  • 𝑔̃𝑖𝑗 = 𝑒̃𝑖·𝑒̃𝑗
  • 𝑔̃𝑖𝑗 = (𝐹𝑘𝑖 𝑒𝑘)·(𝐹𝑙𝑗 𝑒𝑙)
  • 𝑔̃𝑖𝑗 = 𝐹𝑘𝑖𝐹𝑙𝑗 (𝑒𝑘·𝑒𝑙)
  • 𝑔̃𝑖𝑗 = 𝐹𝑘𝑖𝐹𝑙𝑗 𝑔𝑘𝑙
  • 𝑔𝑖𝑗 = 𝑒𝑖·𝑒𝑗
  • 𝑔𝑖𝑗 = (𝐵𝑘𝑖 𝑒̃𝑘)·(𝐵𝑙𝑗 𝑒̃𝑙)
  • 𝑔𝑖𝑗 = 𝐵𝑘𝑖𝐵𝑙𝑗 (𝑒̃𝑘·𝑒̃𝑙)
  • 𝑔𝑖𝑗 = 𝐵𝑘𝑖𝐵𝑙𝑗 𝑔̃𝑘𝑙

CONFIRM THE SQUARED LENGTH OF A VECTOR REMAINS THE SAME WRT CHANGE OF BASIS

verify the following two statements are equivalent:

  • ||𝑣||2 = 𝑣𝑖𝑣𝑗 𝑔𝑖𝑗
  • ||𝑣||2 = 𝑣̃𝑖𝑣̃𝑗 𝑔̃𝑖𝑗

proof:

  • ||𝑣||2 = 𝑣̃𝑖𝑣̃𝑗 𝑔̃𝑖𝑗
  • ||𝑣||2 = (𝐵𝑖𝑎 𝑣𝑎) (𝐵𝑗𝑏 𝑣𝑏) (𝐹𝑘𝑖 𝐹𝑙𝑗 𝑔𝑘𝑙)
  • ||𝑣||2 = 𝑣𝑎𝑣𝑏𝑔𝑘𝑙(𝐵𝑖𝑎𝐹𝑘𝑖 𝐵𝑗𝑏𝐹𝑙𝑗)
  • ||𝑣||2 = 𝑣𝑎𝑣𝑏𝑔𝑘𝑙(𝛿𝑎𝑘 𝛿𝑏𝑙# 𝐵𝐹 simplifies to Kronecker delta function
  • ||𝑣||2 = 𝑣𝑘𝑣𝑙𝑔𝑘𝑙
  • ||𝑣||2 = 𝑣𝑖𝑣𝑗𝑔𝑖𝑗

11 - How do Basis of a Metric Tensor Change WRT Change of Basis

 Click here to expand...

TODO

12 - Bilinear Forms Introduction

 Click here to expand...

METRIC TENSOR ALGEBRAIC PROPERTIES

  • 𝑔: 𝑉⨯𝑉 → ℝ
  • 𝑎·𝑔(𝑣,𝑤) = 𝑔(𝑎·𝑣,𝑤) = 𝑔(𝑣,𝑎·𝑤) # simplified
  • 𝑔(𝑣+𝑢,𝑤) = 𝑔(𝑣,𝑤) + 𝑔(𝑢,𝑤)
  • 𝑔(𝑣,𝑤+𝑢) = 𝑔(𝑣,𝑤) + g(𝑣,𝑢)
  • 𝑔(𝑣,𝑤) = 𝑔(𝑤,𝑣)
  • 𝑔(𝑣,𝑣) = ||𝑣||2 ≥ 0

BILINEAR FORM DEFINITION

  • 𝐵: 𝑉⨯𝑉 → ℝ
  • 𝑎·𝐵(𝑣,𝑤) = 𝐵(𝑎·𝑣,𝑤) = 𝐵(𝑣,𝑎·𝑤)
  • 𝐵(𝑣+𝑢,𝑤) = 𝐵(𝑣,𝑤) + 𝐵(𝑢,𝑤)
  • 𝐵(𝑣,𝑤+𝑢) = 𝐵(𝑣,𝑤) + 𝐵(𝑣,𝑢)

thus bilinear forms are (0,2)-tensors:

  • Loading

  • Loading

FORMS are functions that take vectors as input and output a field

  • the linear form takes in 1 vector
  • the bilinear forms take in 2 vectors

BILINEAR FORMS

  • are linear combinations of covector-covector pairs
    • Loading

How do Bilinear Form components Change WRT change of Basis?

see: Tensor - 13 - How do Bilinear Form Components Change WRT Change of Basis

Why a row of rows?

  • Loading

  • Loading

  • Loading

Bilinear Forms V⨯𝑉 → ℝ:

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

Basis of a Bilinear Form

{𝜀1𝜀1,  𝜀1𝜀2,  𝜀2𝜀1,  𝜀2𝜀2} is one possible basis for bilinear form 𝐵: ℝ2→ℝ where:

  • Loading

  • Loading

  • Loading

Thus

  • 𝐵 = 𝐵11𝜀1𝜀1 + 𝐵12𝜀1𝜀2 + 𝐵21𝜀2𝜀1 + 𝐵22𝜀2𝜀2
  • 𝐵 = 𝐵𝑖𝑗 𝜀𝑖𝜀𝑗 # Einstein's notation

Thus: bilinear forms can be written as linear combinations of covector-covector pairs

How is a Basis 𝜀𝑖𝜀𝑗 a Bilinear Form (That Eats 2 Vectors and Outputs a Scalar)?

Given:

  • 𝐵 = 𝐵𝑖𝑗 𝜀𝑖𝜀𝑗
  • 𝑣 = 𝑣𝑘𝑒𝑘
  • 𝑤 = 𝑤𝑙𝑒𝑙

Let 𝐵 eat a vectors 𝑣 and 𝑤:

  • 𝐵(𝑣,𝑤) = 𝐵(𝑣,𝑤)
  • 𝐵(𝑣,𝑤) = 𝐵𝑖𝑗 𝜀𝑖𝜀𝑗(𝑣𝑘𝑒𝑘 𝑤𝑙𝑒𝑙)
  • 𝐵(𝑣,𝑤) = 𝐵𝑖𝑗𝑣𝑘𝑤𝑙 𝜀𝑖(𝑒𝑘) 𝜀𝑗(𝑒𝑙)
  • 𝐵(𝑣,𝑤) = 𝐵𝑖𝑗𝑣𝑘𝑤𝑙 𝛿𝑖𝑘𝛿𝑗𝑙
  • 𝐵(𝑣,𝑤) = 𝐵𝑖𝑗𝑣𝑖𝑤𝑗 # 𝐵𝑖𝑗𝑣𝑖𝑤𝑗 is a scalar
  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

Which is a scalar

  • Loading


13 - How do Bilinear Form Components Change WRT Change of Basis

 Click here to expand...


 Detailed

Given

  • Loading

  • Loading

  • Loading

  • Loading


Then

  • Loading

  • Loading

  • Loading

  • Loading

Thus

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

Thus

  • Loading

The bilinear map consumes 2 vectors and outputs a scalar

Given

  • Loading

  • Loading

  • Loading

Then

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

  • Loading

 Simple (using covector-covector pairs)

Given

Bilinear Map DefinitionBasis Covectors
  • Loading

  • Loading

  • Loading

  • Loading

Then

Then start with the definition of bilinear form 𝐵:

  • Loading

Next, transform all the basis vectors and basis covectors individually

  • Loading

  • Loading

Thus:

  • Loading

Then start with the definition of bilinear form 𝐵:

  • Loading

Next, transform all the basis vectors and basis covectors individually

  • Loading

  • Loading

Thus

  • Loading

Tensors - Types

(m,n)-tensor

  • m = number of contravariant indices (top of 𝑇)
  • n = number of covariant indices (bottom of 𝑇)

For example, a (3,3)-tensor 𝑇 is denoted as:

  • Loading
  • Loading

How do components of a (3,3)-tensor 𝑇 change WRT change of basis?

  • Loading

     how it's computed

    Prerequisite knowledge:

    How Basis Vectors 𝑒𝑗 Change WRT Change of BasisHow Dual Basis Covectors 𝜀𝑖 Change WRT Change of Basis
    • Loading

    • Loading

    • Loading

    • Loading

    Start with the definition:

    • Loading

    Next, transform all the basis vectors and basis covectors individually and resolve:

    • Loading
    • Loading
    • Loading

    Thus

    • Loading


  • Loading

     how it's computed

    Prerequisite knowledge:

    How Basis Vectors 𝑒𝑗 Change WRT Change of BasisHow Dual Basis Covectors 𝜀𝑖 Change WRT Change of Basis
    • Loading

    • Loading

    • Loading

    • Loading

    Start with the definition:

    • Loading

    Next, transform all the basis vectors and basis covectors individually and resolve:

    • Loading
    • Loading
    • Loading

    Thus

    • Loading
NameTensor TypeLonger
Syntax

Shorter
Syntax

How Components Change
WRT Change of Basis
Is an Element ofAvailable
Functions
Additional
basis vectorscovariant
(0,1)-tensor
Loading
Loading
  • Loading

  • Loading

  •  computation steps

    We define:

    • old basis: {𝑒1, 𝑒2}
    • new basis: {𝑒̃1, 𝑒̃2}

    We define:

    • forward transform: old basis → new basis
        • 𝑒̃1 = 𝑎·𝑒1 + 𝑏·𝑒2
        • 𝑒̃2 = 𝑐·𝑒1 + 𝑑·𝑒2

        Loading

    • backward transform: new basis → old basis
        • 𝑒1 = 𝑎·𝑒̃1 + 𝑏·𝑒̃2
        • 𝑒2 = 𝑐·𝑒̃1 + 𝑑·𝑒̃2

        Loading

    Forward transform is the inverse of Backward transform

    • Loading

    • Loading

    Thus

    • Loading

    • Loading

    Confirming the inverse behavior of the above equations

    • Loading

    • Loading

    • Loading

    • Loading

    Thus 𝛿𝑖𝑗 is the kronecker delta function:

    • Loading

Loading

N/A

 Click here to expand...

basis vector components are covariant with the change of basis

vectorscontravariant
(1,0)-tensor
Loading
Loading
  • Loading

  • Loading

  •  computation steps

    • 𝑣 = 𝑣[1] · 𝑒1 + 𝑣[2] · 𝑒2
    • 𝑣̃ = 𝑣̃[1] · 𝑒̃1 + 𝑣̃[2] · 𝑒̃2
    • 𝑣 = 𝑣̃ are geometrically the same vector
    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    Thus

    • Loading

    • Loading

    • Loading

    • Loading

    Thus

    • Loading

    Thus
    • 𝐵 is used to transform vector components from old to new
    • 𝐹 is used to transform vector components from new to old

Loading

 Click here to expand...

Loading

Loading

 Click here to expand...

vectors themselves are invariant to the change of basis
vector components are contravariant to the change of basis
column vectors are coordinate representations of vectors

dual basis covectorscontravariant
(1,0)-tensor
Loading
Loading
  • Loading

  • Loading

  •  computation steps

    We define:

    • 𝜀𝑖(𝑒𝑗) = 𝛿𝑖𝑗 = 𝜀̃𝑖(𝑒̃𝑗)

    By definition of basis

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

Loading

N/A

 Click here to expand...

dual basis covector components are contravariant with the change of basis

covectorscovariant
(0,1)-tensor
Loading
Loading
  • Loading

  • Loading

  •  computation steps

    Let's define:

    𝜀1(𝑒1) = 1 = 𝜀̃1(𝑒̃1)
    𝜀1(𝑒2) = 0 = 𝜀̃1(𝑒̃2)
    𝜀2(𝑒1) = 0 = 𝜀̃2(𝑒̃1)
    𝜀2(𝑒2) = 1 = 𝜀̃2(𝑒̃2)

    𝜀𝑖(𝑒𝑗) = 𝛿𝑖𝑗 = 𝜀̃𝑖(𝑒̃𝑗)

    Thus

    • 𝛼 = 𝛼̃ = 𝛼1·𝜀1 + 𝛼2·𝜀2
    • 𝛼 = 𝛼̃ = 𝛼̃1·𝜀̃1 + 𝛼̃2·𝜀̃2
    • 𝛼(𝑒1) = 𝛼1
    • 𝛼(𝑒2) = 𝛼2
    • 𝛼(𝑒̃1) = 𝛼̃1
    • 𝛼(𝑒̃2) = 𝛼̃2

    Thus

    • 𝛼 = 𝛼1·𝜀1 + 𝛼2·𝜀2
    • 𝛼 = 𝛼(𝑒1)·𝜀1 + 𝛼(𝑒2)·𝜀2
    • 𝛼 = 𝛼̃1·𝜀̃1 + 𝛼̃2·𝜀̃2
    • 𝛼 = 𝛼(𝑒̃1)·𝜀̃1 + 𝛼(𝑒̃2)·𝜀̃2

    Thus

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

Loading

 Click here to expand...

Loading

Loading

 Click here to expand...

covectors themselves are invariant to the change of basis
covector components are covariant to the change of basis
row vectors are coordinate representations of covectors

linear maps(1,1)-tensor
Loading
Loading
  • Loading

  • Loading

  •  computation steps


     Detailed

    Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    Einstein's notation:

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    • Loading

    Thus
    • Loading

    • Loading


     Simple (using vector-covector pairs)

    Given:

    Linear Map DefinitionBasis VectorsBasis Covectors
    • 𝐿 = 𝐿˜𝑖𝑗 𝑒̃𝑖𝜀̃𝑗
    • 𝐿 = 𝐿𝑖𝑗 𝑒𝑖𝜀𝑗
    • Loading

    • Loading

    • Loading

    • Loading

    Then

    Then start with the definition of linear map 𝐿:

    • 𝐿 = 𝐿𝑖𝑗 𝑒𝑖𝜀𝑗

    Next, transform all the basis vectors and basis covectors individually

    • 𝐿 = 𝐿𝑖𝑗 𝐵𝑘𝑖𝑒̃𝑘 𝐹𝑗𝑙𝜀̃𝑙
    • 𝐿 = (𝐵𝑘𝑖𝐿𝑖𝑗𝐹𝑗𝑙) 𝑒̃𝑘𝜀̃𝑙
    • 𝐿 = (    𝐿˜𝑘𝑙   ) 𝑒̃𝑘𝜀̃𝑙

    Thus:

    • 𝐿𝑘𝑙𝐹𝑘𝑖𝐿˜𝑖𝑗𝐵𝑗𝑙
    • 𝐿˜ = 𝐵𝐿𝐹

    Then start with the definition of linear map 𝐿:

    • 𝐿 = 𝐿˜𝑖𝑗 𝑒̃𝑖𝜀̃𝑗

    Next, transform all the basis vectors and basis covectors individually

    • 𝐿 = 𝐿˜𝑖𝑗 𝐹𝑘𝑖𝑒𝑘 𝐵𝑗𝑙𝜀𝑙
    • 𝐿 = (𝐹𝑘𝑖𝐿˜𝑖𝑗𝐵𝑗𝑙) 𝑒𝑘𝜀𝑙
    • 𝐿 = (    𝐿𝑘𝑙   ) 𝑒𝑘𝜀𝑙

    Thus:

    • 𝐿𝑘𝑙𝐹𝑘𝑖𝐿˜𝑖𝑗𝐵𝑗𝑙
    • 𝐿 = 𝐹𝐿˜𝐵
     Another Way

    Given:

    • basis 𝑒 = {𝑒1, ..., 𝑒𝑛}
    • basis 𝑓 = {𝑓1, ..., 𝑓𝑛}
    • matrix 𝐹 = [𝑓] = [𝑓1 ... 𝑓𝑛] where 𝑓𝑖 are columns expressed in 𝑒

    Then:

    • 𝑣𝑒 = 𝐹 𝑣𝑓
    • 𝑣𝑓 = 𝐹-1 𝑣𝑒

    Hence if:

    • 𝑇∊𝐿(ℝ𝑛) and matrix 𝐴𝑒 is a realization of transformation 𝑇 expressed in basis 𝑒

    What is the realization matrix 𝐴𝑓 expressed in basis 𝑓?

    • by definition:
      • 𝑦𝑓 = 𝐴𝑓𝑥𝑓
      • 𝑦𝑒 = 𝐴𝑒𝑥𝑒
    • then:
      • 𝑦𝑓 = 𝐹-1𝑦𝑒
      • 𝑦𝑓 = 𝐹-1𝐴𝑒𝑥𝑒
      • 𝑦𝑓 = 𝐹-1𝐴𝑒𝐹𝑥𝑓
      • 𝐴𝑓𝑥𝑓 = 𝐹-1𝐴𝑒𝐹𝑥𝑓
    • thus:
      • 𝐴𝑓 = 𝐹-1𝐴𝑒𝐹

Loading

 Click here to expand...

Loading

Loading

Loading

Loading

Loading

Loading

Loading

Loading

 Click here to expand...

linear transformations themselves are invariant to the change of basis
linear transformation components are both contravariant and covariant to the change of basis
matrices are coordinate representations of linear maps

bilinear forms(0,2)-tensor
Loading
Loading
  • Loading

  • Loading

  •  computation steps

    TODO

Loading
 Click here to expand...

Loading

Loading

Loading

Loading

Loading

Loading


metric tensors(0,2)-tensor
Loading
Loading
  • Loading

  • Loading

  •  computation steps

    HOW METRIC TENSOR COMPONENTS CHANGE WRT CHANGE OF BASIS

    • 𝑔𝑘𝑙 = 𝑒𝑘·𝑒𝑙
    • 𝑔̃𝑖𝑗 = 𝑒̃𝑖·𝑒̃𝑗
    • 𝑔̃𝑖𝑗 = 𝑒̃𝑖·𝑒̃𝑗
    • 𝑔̃𝑖𝑗 = (𝐹𝑘𝑖 𝑒𝑘)·(𝐹𝑙𝑗 𝑒𝑙)
    • 𝑔̃𝑖𝑗 = 𝐹𝑘𝑖𝐹𝑙𝑗 (𝑒𝑘·𝑒𝑙)
    • 𝑔̃𝑖𝑗 = 𝐹𝑘𝑖𝐹𝑙𝑗 𝑔𝑘𝑙
    • 𝑔𝑖𝑗 = 𝑒𝑖·𝑒𝑗
    • 𝑔𝑖𝑗 = (𝐵𝑘𝑖 𝑒̃𝑘)·(𝐵𝑙𝑗 𝑒̃𝑙)
    • 𝑔𝑖𝑗 = 𝐵𝑘𝑖𝐵𝑙𝑗 (𝑒̃𝑘·𝑒̃𝑙)
    • 𝑔𝑖𝑗 = 𝐵𝑘𝑖𝐵𝑙𝑗 𝑔̃𝑘𝑙

    CONFIRM THE SQUARED LENGTH OF A VECTOR REMAINS THE SAME WRT CHANGE OF BASIS

    verify the following two statements are equivalent:

    • ||𝑣||2 = 𝑣𝑖𝑣𝑗 𝑔𝑖𝑗
    • ||𝑣||2 = 𝑣̃𝑖𝑣̃𝑗 𝑔̃𝑖𝑗

    proof:

    • ||𝑣||2 = 𝑣̃𝑖𝑣̃𝑗 𝑔̃𝑖𝑗
    • ||𝑣||2 = (𝐵𝑖𝑎 𝑣𝑎) (𝐵𝑗𝑏 𝑣𝑏) (𝐹𝑘𝑖 𝐹𝑙𝑗 𝑔𝑘𝑙)
    • ||𝑣||2 = 𝑣𝑎𝑣𝑏𝑔𝑘𝑙(𝐵𝑖𝑎𝐹𝑘𝑖 𝐵𝑗𝑏𝐹𝑙𝑗)
    • ||𝑣||2 = 𝑣𝑎𝑣𝑏𝑔𝑘𝑙(𝛿𝑎𝑘 𝛿𝑏𝑙# 𝐵𝐹 simplifies to Kronecker delta function
    • ||𝑣||2 = 𝑣𝑘𝑣𝑙𝑔𝑘𝑙
    • ||𝑣||2 = 𝑣𝑖𝑣𝑗𝑔𝑖𝑗

Loading
 Click here to expand...

Loading

Loading

Loading

Loading

Loading

Loading

 Click here to expand...

lengths and angles themselves are invariant to the change of basis
metric tensor components are covariant to the change of basis
symmetric matrices are coordinate representations of metric tensors

metric tensors are a special type of bilinear forms

Resources